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The author offers a particular solution of the two-dimensional problem
of steady heat conduction for a rectangular region composed of two
different materials with mixed boundary conditions.

The following problem arises in connection with
the problem of steady heat conduction in insulation
systems with through inclusions:
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i,e,, the thermal contact is ideal.
To solve the problem we apply a Fourier sine
transformation with respect to y with finite limits [1].
For the first rectangle (1)

R

Ti(x, v,) = j 1 (x, y)sinv, ydy. (11)
i

For the transform differential equation (1) and con-
dition (5) take the following form:
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In this case the py are roots of the equation
hy=—wv,ctgv, R. (14)
The solution of Eq, (12) with condition (13) will be
le_tQ_+Bl Chvn(ll—{—x)’ 15)
v, shwv, [;
where B, is a constant of integration.
By analogy
T2=_t.°,__3 .Ml_zf'_x)_, (16)

Mn ? Sh Mn l2

where B, is a constant of integration, and uy are roots
of the equation
hz = —p, cig & R. an

The inversion formula for our problem has the
form [1]
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Applying the inversion formula, we obtain the
solution for rectangles 1 and 2:
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It should be noted that the first series in (20)and
(21) can be represented in closed form [2]; then
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The solution for the two rectangles, using con-
ditions (3)—(8) at the three boundaries is as follows:

t = F(5) - E B, chv, (I; + x) sinv,,y’ (24)
shv, Iy I,
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The condition at the boundary x =0 makes it pos-
sible to determine the constants By, and By, fromthe
system
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However, thisleadstothe necessity of determining
the constants By from an infinite system of infinite
equations.

To avoid this difficulty, we assumethatthetempera-
ture distribution at the boundary of the two materials
(at x =0) is linear . * In this case, by representing the
temperature distribution along the contact line in
general form, we can formally regard it as specifying
the boundary conditionsfor both rectangles at the
boundary x =0, i,e., we can assume that

ty = (y) = t,= t, (1 —by). @2mn
then
t=f1(5) + 2 (F1(9) — T (] sin v, ydy
=1 O
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ta=fa(y

* This assumption was based on the results of numer-
ous temperature field calculations by the finite dif-
ference method on a computer and a MSM-1 and on
the results of experiments on conductive paper. It may
be assumed with an accuracy acceptable for practicle
calculations that at x =0 the function t = f(y) is linear.
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In solution (28}, (29) only the gradient remains
undetermined.

The requirements of the boundary condition on the
line of contact between the two materials with respect
to the heat-flux equality (10) enables us to determine
the gradient
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Satisfying condition (10) introduced a refinement into
assumption (27) and made it possible fo obtain a
method of determining the temperature field of the
composite rectangle.

Thus, we finally obtain
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where b is found from (30). The roots vy and uy are
presented in [3] (Table 71),

The solution for each region is an algebraic sum.
One term is the solution for the corresponding infinite
plate, while the second expresses the flow of heat
along the heated surface due to contact with the other
material,

For practical calculations it is more convenient to
use the mean-integral gradient of the temperature
distribution at the boundary of the two materials, which
is obtained from the equation
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The figure shows the temperature distribution in the
composite rectangular region as calculated from (31),
(32), (34). For comparison the figure includes the
results of a determination of the field on conductive
paper for the following starting data: Ay =5. 8W/deg-
-m, o =11.6W/deg.m?, 1, =0.2m; A, =0.232 W/deg.

- m, {4y =0,02m, R =0.4m,

It should be noted that the solution obtained can be
extended to the very common practical problem with
somewhat more complicated boundary conditions,

The problem can be formulated completely by means
of Eqs. (1) and (2) with conditions (5)—(10) and the
following conditions, different from the previous prob-
lem, at the boundary y = 0:

ot

Ay —a-——}~a mm—1t) =0 when —I, <x <0, (I)
Y
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. —aa_z tap(tn—t) =0 when 0<x <l (D
Y
We assume that the solutions of Eqs, (1) and (2) will be
the solutions for the corresponding infinite plates with
conditions at the boundaries y =0 (I, II) and y =R (5),
(6) [4]:

1
-
b=t — 1 R“m =t (35)
+—+
Om A

Boundary conditions (7), (8), (10) are then satisfied,
In accordance with requirement (9), we equate (35) to
(36). From this equality we obtain the value of y at

Yo, 1
ty=t_ — by Om t (36)
e L R 1"

a Aa a

which (35) and (36) satisfy the basic equations and all
the boundary conditions. At

Y=y =R i
the temperature in the system does not depend on x
and t; =t, =t;, =const, The isotherm t; is parallel to
the surfaces of the plate. The value of t; can always
be found from (35) or (36).

The definite position and known value of thispartic~
ular isotherm make it possible to divide the com-
posite rectangle into two parts, for which the solution
has already been found in (31), (32),
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t; and t, denote thetemperatures of the correspond-
ing regions of the composite rectangle; x and y are
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Temperature distribution in composite rectangle

along x-axis t in %, x in m, y in m): 1) y =0.4;

2} 0.3; 3) 0.2; 4) 0.1); 5) 0; a) calculated by

the proposed method; b) the same from the
potential field of a model.

coordinates; A; and A, are the thermal conductivities
of the corresponding regions; « is the heat-transfer
coefficient; hy=a/A;, hy =a/X,; vn and py are inte-
gral transform parameters; T; and T, are respective
transforms of the functions t,(x,y) and t,(x,y);a, =
=h; /(1 +hR), a, =h,/(1 +h,R); ty, is the tempera-
ture of surrounding medium on the side of the rectan-
gle y =0; oy, is the coefficient of thermal absorption,
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